Fourier Series







FOURIER ANALYSIS

Fourier analysis Is a tool that changes a time
domain signal to a frequency domain signal an
vice versa




FOURIER SERIES

@ Every composite signal can be
represented with a series of sine and cosine
functions.

@ The functions are integral harmonics of the
fundamental frequency “f” of the composite
signal.

@ Using the series we can decompose any
periodic signal into i1ts harmonics




NEED OF FOURIER SERIES

@ To convert a signal into sinusoidal , we
require a mathematical formula .

@ Fourier series provide such a tool, which can
convert a signal into sinusoidal.




DIRICHLET CONDITIONS

@ A periodic signal x(t), has a Fourier series if it
satisfies the following conditions:

1. X(t) 1s absolutely integrable over any period,

namely Qi T

j\x(t)\dt<oo, Vael

a
2. X(t) has only a finite number of maxima and

minima over any period

3. X(t) has only a finite number of discontinuities
over any period




TRIGNOMETRIC FOURIER SERIES
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SRR
+ b, sin wyt + b, sin 2wt + by sin 3wt +

Sin nwf

cos (n-1)w,t + a, cos nwyt

1y

B 2 pr p
a,= = J; g(t) cos nw,t dt
b= — (g si d
= ?Lg(t) sin nwyt dt

1 pr
ay= = L g(t) dt




EXAMPLES OF SIGNALS AND THE .
FOURIER SERIES REPRESENTATION
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SAWTOOTH SIGNAL .
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COMPLEX FOURIER SERIES

+ioo
e(t)= Z C, ol

1= -oo
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FOURIER TRANSFORM

@ Fourier Transform gives the frequency
domain of a time domain signal




EXAMPLE OF A FOURIER
TRANSFORM
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FOURIER TRANSFORM

Flenl= G() = | e e di

FIGHI= g = [ TG e df




PROPERTIES

OF FT

Operation | Time Function Fourier Transform
Linearity af (f) + bfy(t) aF1(w) + bFy(w)
Time shift flt = 1) F(w)e
Time scaling f(at) —1—F 2
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. . L (o)
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a
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Frequency shift F(t)el™! F(w—wy)
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Differentiation B;g ) (jo)'F(w)
d'{F(w)]
(=i)"f(0) T
w
1
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TiMmE LIMITED AND BAND LIMITED
SIGNALS
@ A time limited signal is a signal for which the
amplitude s(t) =0fort>T,and t<T,

@ A band limited signal Is a signal for which the
amplitude S(f) =0 for f>F, and f < F,




PARSEVAL'S ENERGY THEOREM

@ Mathematical technique to find out the
energy of a signal in frequency domain by
using Fourier transform.

® When we know the Fourier transform of
signal, 1ts energy can be calculated without
converting into time domain.

@ It I1s also called Rayleigh’s energy theorem.




@ Proof: Energy of a signal in time domain
+00
E= f s i

E= [ lsg) di
@ Inverse FT

s=[7G() e df
© By putting g(t

E= [l { [ TG(peary ar




@ By Interchanging the order of integration

+o0 +00 ;
E= [Tl df [ Tewer dr
@ By the concept of complex conjugate

G'(f) =G(-f) = | “gt) e di

® Where G'(f) is complex conjugate of G(f), so
by putting

E= [Tl6(H.G (0l df

E= [1G(H1 df




ENERGY SPECTRAL DENSITY
@ Defined as energy per unit bandwidth
ESD = |G(f)|’

@ Let signal g(t) is passed with a low pass filter

a(t) y(t)
h(t)

y(® = g0 * h(1)

® Taking FT
Y(f) = G(f) . H(f)

® FT of LPF lies between -f_, to +f_, with amplitude
one




E= [TV df
E= [IG(H.HP® df

= [16w1® af
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POWER SPECTRAL DENSITY

@ Defined as power per unit bandwidth.

@ Let the g(t) Is defined as

( T T

H ——< t < +—

g(1) SS S +
L 0 otherwise
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@ But we know ¢(t) is defined for only -T/2 to
+T/2

® So the power content between -= to -T/2 and
+T/2 to «~ is zero.

1
lim — [“lg()P

T— T
@ By Parseval energy theorem

1
hm—f GO df

T— o0 T

P= hm—\G(f)\f df

T— o0 T




@ But If g(t) 1s defined between -T/2<= t<= +T/2
Then G(f) must be lies in the range of +f_ to f
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